提问者:小点点

如何加载混合Parquet模式到DataFrame使用Apache火花?


我有一个火花作业不断上传Parquet文件到S3(分区)。
这些文件都有相同的拼花模式。

其中一种字段类型最近已更改(从String更改为long),因此某些分区的parquet模式是混合的。


虽然我似乎可以执行:sqlContext.read. load(path)
当尝试在DataFrame上应用任何获取操作时(例如收集),该操作失败,ParquetDecodingException

我打算迁移数据并重新格式化它,但无法将混合内容读取到DataFrame中。
如何使用Apache Spark将混合分区加载到DataFrames或任何其他Spark构造中?

以下是ParquetDecodingException跟踪:

scala> df.collect
[Stage 1:==============>        (1 + 3) / 4]
WARN TaskSetManager: Lost task 1.0 in stage 1.0 (TID 2, 172.1.1.1, executor 0): org.apache.parquet.io.ParquetDecodingException: 
Can not read value at 1 in block 0 in file 
s3a://data/parquet/partition_by_day=20180620/partition_by_hour=10/part-00000-6e4f07e4-3d89-4fad-acdf-37054107dc39.snappy.parquet
    at org.apache.parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:243)
    at org.apache.parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:227)
    at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:102)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:166)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:102)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:377)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:231)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:225)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
    at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:826)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
    at org.apache.spark.scheduler.Task.run(Task.scala:99)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:282)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.ClassCastException: [B cannot be cast to java.lang.Long
    at scala.runtime.BoxesRunTime.unboxToLong(BoxesRunTime.java:105)

共2个答案

匿名用户

据我所知,您不能将具有相同字段和不同类型的2个模式混合在一起。因此,我能想到的唯一解决方案是:

>

  • 列出分区的文件

    将每个文件重写到新位置并将数据转换到右侧schame

  • 匿名用户

    还有另一个想法:不是改变现有字段的类型(field_string),而是添加一个长类型的新字段(field_long),并将读取数据的代码更新为类似这样的代码(在伪代码中)并启用模式合并。我相信它默认启用,但这是一个明确说明它的好案例:

    sqlContext.read.option("mergeSchema", "true").parquet(<parquet_file>)
    
    ...
    
    if isNull(field_long) 
      field_value_long = field_string.value.to_long
    else
      field_value_long = field_long.value